If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9p-9p^2=1
We move all terms to the left:
9p-9p^2-(1)=0
a = -9; b = 9; c = -1;
Δ = b2-4ac
Δ = 92-4·(-9)·(-1)
Δ = 45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-3\sqrt{5}}{2*-9}=\frac{-9-3\sqrt{5}}{-18} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+3\sqrt{5}}{2*-9}=\frac{-9+3\sqrt{5}}{-18} $
| 1=p4-3 | | 11x+35=6x+59 | | 23=5r+3 | | 1=2d−5d= | | -8r-72-7=9 | | 2h+1=5h= | | 5=6z-2 | | π94=x | | 3(-5x-1)=-153 | | 19(x+8)=(x+1)15 | | 3(x+2)+2x=22 | | 2/3x=92/3 | | 2x(6x-4)=-3(x-1) | | 15(1.12)^x=2x+30 | | 4m2=6 | | (6x+30)+(8x-60)=180 | | 5(x+4)=7(2+x) | | (3x+15)+(2x-10)=180 | | 1.5t^2-11t+9=0 | | 99x=27 | | 2-2w-5w-17=25 | | 5x+1/4=90 | | 9(x+6)+2=-5(x-2)-4 | | b*1+b=6 | | b*1+b=7 | | 9x-1-8x=-3 | | F(x)=|x+2|-1 | | 4a+5a-10=80 | | -7/3+x=10/6 | | 15+5x=240 | | 80=3y | | -3x-32=-2(5x-4x) |